ASSESSMENT OF THE EXTRA CAPACITY REQUIRED OF ALTERNATIVE ENERGY ELECTRICAL POWER SYSTEMS TO COMPLETELY REPLACE FOSSIL FUELS

Simon P. Michaux

19/08/2022

Associate Professor Mineral Processing & Geometallurgy

THE INDUSTRY CHANGED IN 2005

A case can be made that this blow out was a chain reaction started in the oil industry

A major economic correction (GFC 2008) did not resolve the problems

The change started something like 17 years in our past

ENERGY AND THE \$USD TO GOLD STANDARD DECOUPLE

(Source: BP Statistical World Energy Review 2022, 2015, 2014, 2012, 2011, shaleoilprofile.com, Canadian Association of Petroleum Producers 2022)

ONLY 5 COUNTRIES ARE STILL INCREASING OIL PRODUCTION

If United States and Iraq were excluded, global oil production peaked in 2016

Only United States conventional oil, and Canadian oil sands were expanding production in 2021. All other producers peaked in 2019. This could be a Covid 19 artefact

Since March 2020, demand exceeded supply 19 months out of 26 (or 73% of the time)

(adjusted for inflation using the headline Consumer Price Index (CPI) with the current month as the base)

SUMMARY

Geologi	cal Survey	of Finland	
Circular	Economy	Solutions K	TR
Espoo			

20.8.2021 GTK Open File Work Report 42/2021

Assessment of the Extra Capacity Required of Alternative Energy Electrical Power Systems to Completely Replace Fossil Fuels

Simon P. Michaux

Geologian tutkimuskeskus | Geologiska forskningscentralen | Geological Survey of Finlan Espoo • Kokkola • Kuopio • Loppi • Outokumpu • Rovaniemi www.dk.fi • Puh/Tel + 558 29 503 0000 • Y-tunnus / FO-nummer / Business ID: 0244680-7

Link to full report below https://tupa.gtk.fi/raportti/arkisto/42_2021.pdf

Link to 8 page summary https://mcusercontent.com/72459de8ffe7657f347608c49/files/be87ecb0-46b0-9c31-886a-6202ba5a9b63/Assessment_to_phase_out_fossil_fuels_Summary.pdf

- Number of vehicles, by class
- Number and size of batteries
- An understanding of the EV to H₂-Cell split
- Estimates of EV & H₂-Cell rail transport
- Estimates of an EV & H₂-Cell maritime shipping fleet
- Estimates of phasing out of fossil fuel industrial applications
- Examination of the feasibility of expanding the nuclear NPP fleet
- Assessment of the feasibility of global scale biofuels
- Plastics & fertilizer industries

WHAT WOULD IT TAKE TO REPLACE THE EXISTING FOSSIL FUEL SYSTEM?

•

- What does fossil fuels do for us now?
- How much extra electrical power capacity is required to phase out fossil fuels completely?
 - How many cars, trucks, ships, trains & aeroplanes are there?
- How many new power stations will be needed?
- How many batteries will be needed?
- How many solar panels will be needed?
- How many wind generator turbines will be needed?
- What quantity of minerals will be needed to do this?

CALCULATION ARC

- What is the true scope of tasks to fully phase out fossil fuels, and the complete replacement with non-fossil fuel powered systems?
- Existing ICE transport fleet size
 - Cars & Trucks
 - Rail
 - Maritime shipping
 - Aviation

- What is the number and size of required batteries/hydrogen cells/solar panels/wind turbines
 - In what proportional mix?
 - In 2018, 84.5% of global primary energy consumption was fossil fuel based
- Required power grid expansion to charge the needed number of batteries, and make hydrogen
 - Number of new power stations
 - Required power storage to manage intermittent supply

Current plans are not large enough in scope, the task before us is much larger than the current paradigm allows for

BASELINE CALCULATION

- The global fleet of vehicles is estimated to be 1.416 billion, which travelled an estimated 15.87 trillion km in the year 2018
 - 0.7% is EV in 2020
- For the same energy output:
 - ...an Electric Vehicle system requires battery storage mass 3.2 times the fuel tank (@700bar) mass of a hydrogen H-Cell system
 - ...meanwhile a hydrogen H-Cell system will require 2.5 times more electricity compared to a Electric Vehicle system

• All short-range transport could be done by Electric Vehicle systems

- All passenger cars, commercial vans, delivery trucks and buses (1.39 billion vehicles), would travel 14.25 trillion km in 365 days
- This would require 65.19 TWh of batteries (282.6 million tonnes of Li-Ion batteries)
- All long-range distance transport could be powered with a hydrogen fuel cells
 - All Class 8 HCV trucks, the rail transport network (including freight), and the maritime ship fleet
 - In total, 200.1 million tonnes of hydrogen would be needed annually

GLOBAL SYSTEM I

1.39 billion Electric Vehicles	Charging Batteries
695.2 million Passenger Cars 5.4 trillion km	1 128.5 TWh
29 million Buses & Delivery Trucks 803 billion	km 1 166.1 TWh
601 million Vans, Light Trucks 7.9 trillion km	2 181.7 TWh
62 million Motorcycles 160 billion km	19.4 billion kWh

*updates in EV energy efficiency reduced this number by 4% from (Michaux 2021)

GLOBAL SYSTEM II

Hydrogen Economy

11 553.6 TWh

Biomass Economy

Sustainability audit

GLOBAL SYSTEM III Hydro Power 4 809.6 TWh 3 628 stations **Nuclear Power** 2 701.4 TWh **Additional Annual** 211 stations 4 495.7 TWh EV **Electrical Power** Wind Power 13 800.4 TWh Requires 36 007.9 TWh 169 867 stations Industry 19 958.6 TWh Solar Power 13 800.4 TWh 393 840 stations 11 553.6 TWh H_{2} 586 032 NEW Non-Fossil Fuel **Other Renewables** Geothermal & Tidal **Power Stations** 266.7 TWh 442 stations **Biowaste to Energy** 624.0 TWh 18 044 stations Power plant fleet in 2018 was 46 423 stations

Power storage buffer

Additional Electrical Power Generation Capacity Required to Completely Phase Out Fossil Fuels

NEW ENERGY SPLIT

Note: $1.5-S = 1.5^{\circ}C$ Scenario; CSP = concentrated solar power; GW = gigawatts; PV = photovoltaic; RE = renewable energy; TWh/yr = terawatt hours per year; VRE = variable renewable energy.

Global total power generation and the installed capacity of power generation sources in 1.5°C Scenario in 2018, 2030 and 2050 (Source: IRENA 2022)

THE FOLLOWING ASSUMPTIONS WERE MADE IN THE GLOBAL ELECTRICAL POWER GENERATION ENERGY SPLIT:

- All fossil fuels will be completely phased out
- Hydro will expand by adding 115 % capacity compared to 2018 production rates
- Nuclear will double in capacity from 2018 production rates
- Biowaste to energy cannot be expanded beyond what it is now, as planetary environmental sustainability limits may be exceeded (future work required). Any extra biomass harvest capacity should be tasked to generate biofuel for the aviation industry, feedstock for bioplastics and feedstock for the organic fertilizer industry
- Geothermal power generation will triple in producing capacity compared to 2018 production rates
- After the above calculations, all remaining new required capacity will be split equally between wind and solar
- New wind capacity will be a split between 70% onshore wind turbine site to 30% offshore wind turbine
- New solar power capacity will be split between 90% solar PV and 10% solar thermal

PROPOSED NEW GLOBAL ENERGY SPLIT

Developed from a combination of an IRENA 2022 projection and some of my own assumptions

(number)

211

3 628

118 907

50,960

375 910

17 930

18 044

586 032

TO DELIVER 1000 TWH OF POWER TO THE GRID OVER 1 YEAR...

(Source Data: Global Energy Observatory, Agora Energiewende and Sandbag 2019)

Renewables have a much lower ERoEI ratio than fossil fuels and may not be strong enough to power the next industrial era

GAS AND HYDRO ARE THE EXISTING BUFFER

Distribution of the sun's radiation energy over the year in Germany (Wesselak & Voswinckel 2016)

WIND IS HIGHLY VARIABLE

- Reliable capacity as a % of max capacity for wind 7-25% (UK Parliament 2014)
 - Power production was so erratic it could not be predicted
- Variations in power produced can last weeks and, in some cases, months
- In practical terms, global power generation operating hours in 2018 (Global Energy Observatory)
 - Solar PV units produced 11.4% of the calendar year
 - Wind units produced 24.9% of the calendar year

Highly variable of when power was produced

POWER SUPPLY & DEMAND

Transport demand could function on a 48-hour buffer

Watch this presentation Professor Jan Blomgren: Så här uppstod elkrisen i Sverige https://www.youtube.com/watch?v=00h w5KrEVc

SUPPLY Nuclear can't vary at all and must be used as a base load Hydro can vary within a small window

Wind & solar electrical power production could need a buffer of several months if they make up a large portion of the energy mix

PROJECTED NEW ENERGY SPLIT FOR 2050

2nd generation of work done

Developed from a combination of an IRENA 2022 projection and some of my own assumptions

	Power Generation System	Proposed Proportion of Energy Split on new annual capacity	Extra required annual capacity to phase out fossil fuels	Estimated number of required new power plants of average size to phase out fossil fuels
		(%)	(TWh)	(number)
	Nuclear	7,50 %	2 701,4	211
	Hydroelectric	13,36 %	4 809,6	3 628
i	Wind Onshore (70% share)	26,83 %	9 660,3	118 907
	Wind Offshore (30% share)	11,50 %	4 140,1	50 960
!	Solar PV (90% share)	34,50 %	12 420,3	375 910
i	Solar Thermal (10% share)	3,83 %	1 380,0	17 930
	Geothermal	0,74 %	266,7	442
	Biowaste to energy	1,73 %	624,0	18 044

Global Wind & Solar capacity only (72.8%)
= 26 220.7 TWh

36 007,9

• 4 weeks Wind & Solar capacity only = 2 017.0 TWh

This is the size of the needed power buffer

STATIONARY POWER STORAGE BUFFER

Minerals used in selected clean energy technologies

IEA. All rights reserved.

Notes: kg = kilogramme; MW = megawatt. Steel and aluminium not included. See Chapter 1 and Annex for details on the assumptions and methodologies.

(Source: The Role of Critical Minerals in Clean Energy Transitions IEA)

Cathode chemistries for storage

IEA. All rights reserved.

Notes: LDVs = light-duty vehicles (passenger cars and vans, light commercial vehicles, and 2- and 3-wheelers); HDVs = heavy-duty vehicles (trucks and buses).

Sources: IEA analysis complemented by Adamas Intelligence (2021a) and EV-Volumes (2021).

(Source: The Role of Critical Minerals in Clean Energy Transitions IEA)

EVs use around six times more minerals than conventional vehicles

Typical use of minerals in an internal combustion engine vehicle and a battery electric vehicle

IEA. All rights reserved.

Notes: For this figure, the EV motor is a permanent-magnet synchronous motor (neodymium iron boron [NdFeB]); the battery is 75 kilowatt hours (kWh) with graphite anodes.

Sources: Argonne National Laboratory (2020b, 2020a); Ballinger et al. (2019); Fishman et al. (2018b); Nordelöf et al. (2019); Watari et al. (2019).

PAGE | 89

IEA. All rights reserved.

Notes: c-Si = crystalline silicon; CIGS = copper indium gallium diselenide; CdTe = cadmium telluride; a-Si = amorphous silicon; GaAs = gallium arsenide.

Share of annual capacity additions by PV technology under different technology evolution scenarios

(Source: IEA 2021) (Copyright: IEA)

Renewable Technology Unit or Service	Number (number)	Estimated total battery capacity (TW)	Estimated extra annual power output required (TWh)	Estimated extra total installed power generation capacity (MW)
Electric Vehicles				
Bus + Medium Delivery Truck	29 002 253	5,98		
Light Truck/Van + Light-Duty Vehicle	601 327 324	25,32		
Passenger Car	695 160 429	32,53		
Motorcycle	62 109 261	1,34		
Hydrogen Fuel Cells				
HCV Class 8 Truck	28 929 348		1 949,0	
Rail Freight Locomotive	104 894		277,0	
Maritime Small Vessel (100 GT to 499 GT)	53 854		7,7	
Maritime Medium Vessel (500 GT to 24 999 GT)	44 696		131,7	
Maritime Large Vessel (25 000 GT to 59 999 GT)	12 000		255.7	
Maritime Very Large Vessel (>60 000 GT)	6 307		379,7	
Nuclear Power (Annual Production)			2 701,4	431 800
Hydroelectricity (Annual Production)			4 809,6	817 720
Geothermal Power (Annual Production)			266,7	41 867
Wind Turbines				
3MW Onshore wind turbines (70% share)	1 474 452		9 660,3	4 423 357
3MW Offshore wind turbines (30% share)	631 908		4 140,1	1 895 725
Solar Panels				
450 MW solar panels	27 650 301 276		12 420,3	12 442 636
Stationary power storage buffer				
4 weeks capacity for wind & solar PV only		2 017,0		

NUMBER OF TECHNOLOGY UNITS

•	Electric	Vehicles	(1.39	billion)
---	----------	----------	-------	----------

- EV Batteries
- Hydrogen fuel cells (29.1 million)
- Wind Turbines
- Solar Panels
- Power Storage Batteries (for 4 weeks of wind & solar capacity only)

WIND TURBINE METAL CONTENT

- Capacity required
- Market share of units
- Number of units by type
- Metal content in each unit type
- Sum total of global fleet by metal type

PROPOSED NEW GLOBAL ENERGY SPLIT

Power Generation System	Proposed Proportion of Energy Split on new annual capacity	Extra required annual capacity to phase out fossil fuels	Estimated number of required new power plants of average size to phase out fossil fuels	
	(%)	(TWh)	(number)	
Nuclear	7,50 %	2 701,4	211	
Hydroelectric	13,36 %	4 809,6	3 628	_
Wind Onshore (70% share)	26,83 %	9 660,3	118 907	
Wind Offshore (30% share)	11,50 %	4 140,1	50 960	
Solar PV (90% share)	34,50 %	12 420,3	375 910	
Solar Thermal (10% share)	3,83 %	1 380,0	17 930	
Geothermal	0,74 %	266,7	442	
Biowaste to energy	1,73 %	624,0	18 044	

36 007,9

586 032

Developed from a combination of an IRENA 2022 projection and some of my own assumptions

NUMBER AND TYPE OF WIND TURBINES

Table A3. Estimated number of new 3MW wind turbines and 450 MW solar panels to globally phase pout fossil fuels

Power Generation System	Extra required annual capacity to phase out fossil fuels	Power produced by a <u>single</u> average plant in 2018	Estimated number of required new power plants of <u>average size</u> to phase out fossil fuels	Average installed plant capacity in 2018 (Global Energy Observatory)	Total <u>new</u> annual installed capacity required	Number of 3MW wind turbines	Number of 450 Watt Commercial grade solar panels
	(kWh)	(kWh)	(number)	(MW)	(MW)	(number)	(number)
Wind Onshore (70% share)	9.66E+12	8.12E+07	118 907	37.2	4 423 357	1 474 452	
Wind Offshore (30% share)	4.14E+12	8.12E+07	50 960	37.2	1 895 725	631 908	
Solar PV (90% share)	1.24E+13	3.30E+07	375 910	33.1	12 442 636		27 650 301 276

Projected wind turbine global market share (Source: IEA) (Copyright IEA)

Metal content of different wind turbine units (Note: metal content intensity numbers are based on the onshore installation environment. More copper is needed in offshore applications due to much longer cabling requirements)

(Source: IEA) (Copyright IEA)

MARKET SHARE OF WIND TURBINES

Onshore Wind Turbine Type	Acronym	Projected market share in 2040 (%)	Required new annual installed capacity required (4 423 357 MW) (MW)
Gearbox double-fed induction generator	GB-DFIG	69.0 %	3 051 148
Gearbox permanent magnet synchronous generator	GB-PMSG	11.7 %	516 596
Direct-drive permanent magnet synchronous generator	DD-PMSG	14.6 %	645 746
Direct-drive electrically excited synchronous generator	DD-EESG	4.7 %	209 867

Table A4. Projected market share of **onshore** wind turbine types used in this study

Table A5. Projected market share of **offshore** wind turbine types used in this study

Offshore Wind Turbine Type	Acronym	Projected market share in 2040 (%)	Required new annual installed capacity required (1 895 725 MW) (MW)
Gearbox double-fed induction generator	GB-DFIG	-	
Gearbox permanent magnet synchronous generator	GB-PMSG	13.1 %	248 340
Direct-drive permanent magnet synchronous generator	DD-PMSG	86.9 %	1 647 385
Direct-drive electrically excited synchronous generator	DD-EESG	-	

METAL CONTENT IN A WIND TURBINE

Table A6. Estimated metal content in wind turbines by technology unit per MW

	Gearbox double- fed induction	Gearbox permanent magnet synchronous	Direct-drive permanent magnet synchronous	Direct-drive electrically excited synchronous
Metal Content in a Wind	generator	generator	generator	generator
Turbine by Type	GB-DFIG	GB-PMSG	DD-PMSG	DD-EESG
	(kg/MW)	(kg/MW)	(kg/MW)	(kg/MW)
Copper (Onshore unit)	2895.8	2432.4	4459.5	6486.5
Copper (Offshore unit) *	7895.8	7432.4	9459.5	11486.5
Zinc	5501.9	5501.9	5501.9	5501.9
Manganese	752.9	781.9	747.1	752.9
Chromium	463.3	532.8	521.2	521.2
Nickel	463.3	463.3	231.7	231.7
Molybdenum	104.2	115.8	104.2	104.2
Rare Earth Metals				
Neodymium	12.4	49.7	180.0	22.8
Praseodymium		4.1	34.1	6.2
Dysprosium		6.2	16.6	4.1
Terbium		2.1	6.2	4.6

* An offshore wind turbine would require a much longer connecting cable to the power grid resulting in more copper required in manufacture. This is assumed to add 5 000 kg/MW (Source: estiamted from Bobba *et al.* 2020). So metla content for an onshore wind turbine is assumed to be the same as an offshore wind turbine, with the exception of copper.

METAL CONTENT IN ONSHORE WIND TURBINE GLOBAL FLEET

Table A7. Total metal content in onshore wind turbines to globally phase out fossil fuels

Combined Metal Content in an onshore wind	Gearbox double-fed induction generator	Gearbox permanent magnet synchronous generator	Direct-drive permanent magnet synchronous generator	Direct-drive electrically excited synchronous generator	Metal quantity required for onshore wind turbines
turbine by Type	GB-DFIG	GB-PMSG	DD-PMSG	DD-EESG	
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Copper (Onshore unit)	8 835 370	1 256 586	2 879 676	1 361 302	14 332 934
Zinc	16 787 204	2 842 278	3 552 847	1 154 675	24 337 004
Manganese	2 297 196	403 903	482 439	158 008	3 341 546
Chromium	1 413 659	275 252	336 586	109 390	2 134 887
Nickel	1 413 659	239 350	149 594	48 618	1 851 220
Molybdenum	318 073	59 837	67 317	21 878	467 106
Rare Earth Metals					
Neodymium	37 876	25 652	116 234	4 776	184 539
Praseodymium		2 138	22 044	1 303	25 485
Dysprosium		3 206	10 688	868	14 763
Terbium		1 069	4 008	955	6 032

METAL CONTENT IN OFFSHORE WIND TURBINE GLOBAL FLEET

Table A8. Total metal content in offshore wind turbines to globally phase out fossil fuels

Combined Metal Content in an	Gearbox permanent magnet synchronous generator	Direct-drive permanent magnet synchronous generator	Metal quantity required for onshore wind turbines
onshore wind turbine by Type	GB-PMSG	DD-PMSG	
	(tonnes)	(tonnes)	(tonnes)
Copper (Offshore unit)	1 845 770	15 583 368	17 429 138
Zinc	1 366 349	9 063 796	10 430 145
Manganese	194 165	1 230 768	1 424 933
Chromium	132 320	858 675	990 996
Nickel	115 061	381 634	496 694
Molybdenum	28 765	171 735	200 500
Rare Earth Metals			
Neodymium	12 331	296 529	308 861
Praseodymium	1 028	56 238	57 266
Dysprosium	1 541	27 267	28 808
Terbium	514	10 225	10 739

Metal	Metal quantity required for onshore wind turbines (tonnes)	Metal quantity required for offshore wind turbines (tonnes)	Metal content in 12 442 636 MW of solar panels (tonnes)	Metal content in Nuclear power plant construction (tonnes)	Metal content in Hydro power plant construction (tonnes)
Steel	(0000)	(0000)		(tornes)	(tornics)
Aluminium	*	*	149 311 627		
Copper	14 332 934	17 429 138	35 349 528	634 746	858 606
Zinc	24 337 004	10 430 145	00010020	001710	
Magnesium Metal	*	*			
Manganese	3 341 546	1 424 933			163 544
Chromium	2 134 887	990 996		945 642	
Nickel	1 851 220	496 694		561 340	24 532
Lithium					
Cobalt					
Graphite					
Molybdenum	467 106	200 500			
Silicon (Metallurgical)			40 571 400		
Silvor			49 57 1 400		
Distinum			145 579		
Vanadium					
Zirkonium					
Zirkomum					
Rare Earth Metals					
Neodymium	184 539	308 861	*		
Germanium	*	*	*		
Lanthanum	*	*	*		
Praseodymium	25 485	57 266	*		
Dysprosium	14 763	28 808	*		
Terbium	6 032	10 739	*		
Hafnium	*	*	*	216	
Yttrium	*	*	*	216	

METAL NEEDED PART 1

Table A31-1. Total metal quantity required to manufacture one generation of technology units to phase out fossil fuels

* no data available

Mot	al content in	Metal content in	Metal content in		Motal contont in
IVIEL				Metal content	
Metal	hermal power	Electric Vehicle	hydrogen fuel cell	in EV batteries	stationary storage
plant	t construction	construction	construction		batteries
	(tonnes)	(tonnes)	(tonnes)	(tonnes)	(tonnes)
Steel		1 683 027 473	(only Pt data		
Aluminium		150 427 661	avilable)		
Copper		74 081 275		63 251 218	4 158 751 111
Zinc				936 793	
Magnesium Metal		499 536			
Manganese				9 317 606	203 333 550
Chromium	2 701 078				
Nickel	5 016 288			70 999 643	820 054 277
Lithium				20 291 338	879 282 274
Cobalt				9 713 443	198 614 462
Graphite				155 212 285	8 392 933 607
Molybdenum	434 102				
Silicon (Metallurgical)					
Silver					
Platinum			2 682		
Vanadium					647 928 875
Zirkonium				2 614 126	
Rare Earth Metals					
Neodymium		471 784	*	*	*
Germanium		*	*	4 163 162	*
Lanthanum		*	*	5 970 738	*
Praseodymium		152 636	*	*	*
, Dysprosium		152 636	*	*	*
Terbium		*	*	*	*
Hafnium		*	*	*	*
Yttrium		*	*	*	*

METAL NEEDED PART 2

Table A31-2. Total metal quantity required to manufacture one generation of technology units to phase out fossil fuels

45

* no data available

		Total metal required		
	Flomont	produce one generation of Global Metal		at 2019 rates of
Metal	Liement	technology units to phase	Production 2019	production
		out fossil fuels		
		(tonnes)	(tonnes)	(years)
Aluminium	Al	299 739 288	63 136 000	4.7
Copper	Cu	4 364 688 556	24 200 000	180.4
Zinc	Zn	35 703 942	13 524 000	2.6
Magnesium Metal	Mg	499 536	1 120 000	0.4
Manganese	Mn	217 581 179	20 591 000	10.6
Chromium	Cr	6 772 603	37 498 478	0.2
Nickel	Ni	899 003 994	2 350 142	382.5
Lithium	Li	899 573 612	95 170	9452.3
Cobalt	Со	208 327 906	126 019	1653.1
Graphite (natural flake)	С	8 548 145 892	1 156 300	6778.8
Graphite (synthetic)	С		1 573 000 🔶	
Molybdenum	Mo	1 101 708	277094 ‡	4.0
Silicon (Metallurgical)	Si	49 571 460	8 410 000	5.9
Silver	Ag	145 579	26282 ‡	5.5
Platinum	Pt	2 682	190 ‡	14.1
Vanadium	V	647 928 875	96021 ‡	6747.8
Zirkonium	Zr	2 614 126	1 338 463 ‡	2.0
Rare Earth Metals	_			
Neodymium	Nd	965 183	23 900	40.4
Germanium	Ge	4 163 162	143	29 113
Lanthanum	La	5 970 738	35 800	166.8
Praseodymium	Pr	235 387	7 500	31.4
Dysprosium	Dy	196 207	1 000	196.2
Terbium	Tb	16 771	280	59.9
Hafnium	Hf	216	66	3.3
Yttrium	Y	216	14 000	0.0154

METAL PRODUCED IN 2019

(Source: BGR 2021, USGS, Friedrichs 2022)

GTK

‡ Estimated from mining production. All other values are refining production values.

♦ Natural flake graphite and synthetic graphite was combined to estimate total production

Metal	Total metal required produce one generation of technology units to phase out fossil fuels	Reported Global Reserves 2022	Global Reseves as a proportion of metals required to phase out fossil fuels
Source: USGS	(tonnes)	(tonnes)	(%)
Copper	4 364 688 556	880 000 000	20.16 %
Nickel	899 003 994	95 000 000	10.57 %
Lithium	899 573 612	22 000 000	2.45 %
Cobalt	208 327 906	7 600 000	3.65 %
Graphite (natural flake)	8 548 145 892	320 000 000	3.74 %
Silver	145 579	530 000	
Vanadium	647 928 875	24 000 000	3.70 %

- For every 1000 deposits discovered, 1 or 2 become mines
- Time taken to develop a discovered deposit to a mine 20 years
- For every 10 producing mines, 2 or 3 will lose money and shut down

- 0.7% of passenger cars were EV in 2020
- In 2018, renewables accounted for 4.05% of the global energy generation.
- What is not constructed yet, cannot be recycled
- If it was all constructed next year, it would not be until 2033 when large volumes would be available for recycling
- The 1st generation at least must come from mining

Remember, this is for just the first generation of units. They will wear out in 10 to 25 years, after which they will need to be replaced

- Total metal required produce one generation of EV's, batteries, wind turbines & solar panels (using 4 weeks buffer wind & solar)
- Total metal required produce one generation of EV's, batteries, wind turbines & solar panels (using 48 hours buffer wind & solar)
- Reported Global Reserves 2022 (Source: USGS)

■ Global Metal Production 2019 (Source: USGS)

ECONOMIC GROWTH AND RESOURCE SUPPLY

Source: U.S. Geological Survey, BMO Capital Markets

We want 4.36 billion tonnes of Cu, just to manufacture one generation of renewable technology (6.2 x historical Cu mining)

COPPER DISCOVERY

Figure 1: Exploration expenditures versus number of major discoveries, where major is defined as, for example, a gold deposit containing more than 1 Moz of gold or a copper deposit with more than 1 Mt of copper. (Data courtesy of MinEx Consulting)

(Source: Dunbar et al. 2016)

GLOBAL PRIMARY METAL AND ORE PRODUCTION

Global production of primary metals and ores. Source: British Geological Survey 2019.

*Excludes production of potash (~61mtpa) and phosphate rock (~157mtpa).

STEWARDSHIP OF PLANET EARTH

 An industrial ecosystem of unprecedented size and complexity, that took more than a century to build with the support of the highest calorifically dense source of cheap energy the world has ever known (oil) in abundant quantities, with easily available credit, and unlimited mineral resources

 We now seek to build an even more complex system with very expensive energy, a fragile finance system saturated in debt, not enough minerals, with an unprecedented number of human population, embedded in a deteriorating environment.

CONCLUSIONS - 1

- Additional non-fossil fuel electrical power annual capacity is 36 007.9 TWh
- The proposed non-fossil fuel energy mix translates into 586 032 new power plants
 - To put this in context, the total power plant fleet in 2018 (all types including fossil fuel plants) was only 46 423 stations
- Electrical power generated from solar and wind sources are highly intermittent, both across 24-hour cycle and in seasonal context.
 - A power storage buffer is required if these power generation systems are to be used on a large scale.
- A conservative estimate is a 4-week power capacity buffer for solar and wind
 - The power storage buffer capacity for the global electrical power system would be 548.9 TWh
 - This is approximately 30 times what the EV fleet needs
 - The number of 100 MW stations would be 5.5 million

CONCLUSIONS - 2

- The task to transition away from fossil fuels is much larger than first thought
- The ERoEI ratio for renewable energy systems is much lower than fossil fuel energy systems. Renewable energy technology may not be strong enough to replace fossil fuels.
- Mineral deposits are decreasing in grade, requiring more energy for extraction per unit of metal. This is happening at a time when energy is becoming more expensive and inelastic in supply
- Technology development in mining is comparatively slow, requiring enormous capital, and long time scales
- Hopes for future technology breakthroughs to 'somehow' deliver more commodity resources do not seem to consider the nature of what mineral resources that are left.
- The current ecosystem has no concept of its dependency on minerals and does not consider long term concepts like continuous growth in production against finite resources

Our industrial ecosystem is minerals blind

CONCLUSIONS - 3

- Current thinking has seriously underestimated the scale of the task ahead
- Nuclear is vital to keep industry going but can't be scaled up to be the only energy source
- Biofuels may be the only way to power aviation and plastics. It cannot be scaled up to replace petroleum.
- Battery chemistries other than lithium-ion should/will be developed, each with different mineral resources required
- Current mineral reserves are not adequate to resource the metal production to manufacture just one generation of renewable technology units
 - 2019 mining production is several orders of magnitude too small to be useful in transition away from fossil fuels
 - 2022 mineral reserves are also not enough to manufacture just one generation of renewable energy technology units
- Metals of all kinds are about to become much more valuable
 - Evolution of the industrial ecosystem and its market is likely
- There is a coming Renaissance for the exploration for and mining of minerals

KIITOS & THANK YOU

Simon P. Michaux

Associate Professor Geometallurgy Unit Minerals Processing and Materials Research - Circular Economy Solutions

Ore Characterization, Process Engineering & Mineral Intelligence

Geological Survey of Finland/Geologian tutkimuskeskus

PO Box 96, (Vuorimiehentie 2) F1-02151 Espoo, FINLAND

simon.michaux@gtk.fi Mobile: +358 (0)50 348 6443